Each of the four forces acting at E has a magnitude of 28 kN. Express each force as a Cartesian vector and determine the resultant force.
Solution:
Show me the final answers↓
We will first write the locations of points A, B, C, D, and E in Cartesian vector form.
Using the image, the locations of the points are:
B:(6i+4j+0k) m
C:(-6i+4j+0k) m
D:(-6i-4j+0k) m
E:(0i+0j+12k) m
We will now write position vectors for points from E to A, E to B, E to C, and E to D.
r_{EA}\,=\,\left\{6i-4j-12k\right\} m
r_{EB}\,=\,\left\{(6-0)i+(4-0)j+(0-12)k\right\} m
r_{EB}\,=\,\left\{6i+4j-12k\right\} m
r_{EC}\,=\,\left\{(-6-0)i+(4-0)j+(0-12)k\right\} m
r_{EC}\,=\,\left\{-6i+4j-12k\right\} m
r_{ED}\,=\,\left\{(-6-0)i+(-4-0)j+(0-12)k\right\} m
r_{ED}\,=\,\left\{-6i-4j-12k\right\} m
Next we will find the magnitude of each position vector.
magnitude of r_{EB}\,=\,\sqrt{(6)^2+(4)^2+(-12)^2}\,=\,14 m
magnitude of r_{EC}\,=\,\sqrt{(-6)^2+(4)^2+(-12)^2}\,=\,14 m
magnitude of r_{ED}\,=\,\sqrt{(-6)^2+(-4)^2+(-12)^2}\,=\,14 m
We can now write the unit vector for each position vector.
u_{EB}\,=\,\left(\dfrac{6}{14}i\,+\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
u_{EC}\,=\,\left(-\dfrac{6}{14}i\,+\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
u_{ED}\,=\,\left(-\dfrac{6}{14}i\,-\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
Let us now express each force in Cartesian vector form. Remember that each force has a magnitude of 28 kN.
F_{EA}\,=\,\left\{12i-8j-24k\right\} kN
F_{EB}\,=\,28\left(\dfrac{6}{14}i\,+\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
F_{EB}\,=\,\left\{12i+8j-24k\right\} kN
F_{EC}\,=\,28\left(-\dfrac{6}{14}i\,+\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
F_{EC}\,=\,\left\{-12i+8j-24k\right\} kN
F_{ED}\,=\,28\left(-\dfrac{6}{14}i\,-\,\dfrac{4}{14}j\,-\,\dfrac{12}{14}k\right)
F_{ED}\,=\,\left\{-12i-8j-24k\right\} kN
The resultant force is equal to each corresponding coordinate of the forces added together.
F_R\,=\,\left\{(12+12-12-12)i+(-8+8+8-8)j+(-24-24-24-24)k\right\} kN
F_R\,=\,\left\{0i+0j-96k\right\} kN
Final Answers:
F_{EB}\,=\,\left\{12i+8j-24k\right\} kN
F_{EC}\,=\,\left\{-12i+8j-24k\right\} kN
F_{ED}\,=\,\left\{-12i-8j-24k\right\} kN
F_R\,=\,\left\{0i+0j-96k\right\} kN